Problems	Prof. Peter Koepke
Series 13	Dr. Philipp Schlicht

Problem 49 (2 points). Show that there is no normal non-principal ultrafilter on ω .

Problem 50 (2 points). Show that the club filter

 $\mathcal{C}_{\omega_1} = \{ X \subseteq \omega_1 \mid \text{ there is a club } C \subseteq X \text{ in } \omega_1 \}$

on ω_1 is not an ultrafilter.

Problem 51 (6 points). Suppose that κ is a cardinal. If U is a subset of $P(\kappa)$ and $f: \kappa \to \kappa$, let

$$f[\![U]\!] = \{X \subseteq \kappa \mid f^{-1}[X] \in U\}.$$

Prove the following statements.

- (1) If U is a filter on κ and $f: \kappa \to \kappa$, then f[[U]] is a filter on κ .
- (2) If U is an ultrafilter on κ and $f: \kappa \to \kappa$, then f[[U]] is an ultrafilter on κ .
- (3) If U is a normal ultrafilter on κ , then there is a bijection $f: \kappa \to \kappa$ such that f[[U]] is not normal.

Problem 52 (4 points). Suppose that $\kappa > \omega_1$ is a regular cardinal. If S is a stationary subset of κ , the *trace* of S is defined as

 $Tr(S) = \{ \alpha < \kappa \mid cof(\alpha) > \omega \text{ and } S \cap \alpha \text{ is stationary} \}.$

Prove the following statements for all stationary subsets S and T of κ .

- (1) If $S \subseteq T$, then $\operatorname{Tr}(S) \subseteq \operatorname{Tr}(T)$.
- (2) $\operatorname{Tr}(S \cup T) = \operatorname{Tr}(S) \cup \operatorname{Tr}(T)$.
- (3) $\operatorname{Tr}(\operatorname{Tr}(S)) \subseteq \operatorname{Tr}(S)$.
- (4) If $S \triangle T$ is a non-stationary subset of κ , then $\operatorname{Tr}(S) \triangle \operatorname{Tr}(T)$ is a non-stationary subset of κ .

Problem 53 (6 points). Suppose that U is a non-principal ultrafilter on κ . We define the *ultrapower* Ult(V, U) as the class of all functions $f: \kappa \to V$ and the relations $=_U$, ϵ_U on Ult(V, U) by

$$f =_U g \iff \{\alpha < \kappa \mid f(\alpha) = g(\alpha)\} \in U,$$
$$f \in_U g \iff \{\alpha < \kappa \mid f(\alpha) \in g(\alpha)\} \in U.$$

Recall that the relation ϵ_U is called *well-founded* if there is no sequence $\langle f_n | n \epsilon \omega \rangle$ with $f_{n+1} \epsilon_U f_n$ for all $n \epsilon \omega$. Prove the following statements.

- (1) $=_U$ is an equivalence relation.
- (2) If U is ω_1 -complete, then ϵ_U is well-founded.
- (3) If ϵ_U is well-founded, then U is ω_1 -complete (Hint: show that there is a partition $\langle X_n \mid n \in \omega \rangle$ of κ with $X_n \notin U$ for all $n \in \omega$. For each $k \in \omega$, let f_k be a function on κ such that $f_k(\alpha) = n k$ for all $\alpha \in X_n$).

Due Friday, February 03, before the lecture.